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propovxl. Feder' has described a computer-oriented 
procedure for skew-ray tracing through rotationally 
symmetric systems containing aspheric surfaces. ,411en 

J D. Feder, 3. Opt. SQC. Am. 41,6N (1951). 
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and Snyder2 have extended Feder's procedure to allow 
for uncentered configurations of rotationally symmetric 
surfaces. This procedure requires that the designer 
specify the direction cosines of the line joining the 
vertices of adjacent surfaces. Murray3 has presented a 
toric skew-ray trace which is suitable for surfaces whose 
radii are not too large, and Herzberger4 has given a 
detailed treatment of quadratic surfaces (conics of 
revolution, parabolic cylinders, and elliptic paraboloids). 
More recently, Rosendahlb has described a method for 
ray tracing through systems containing parallel ruled 
gratings. Yoshinaga, Okazaki, and Tatsuoka6 also used 
ray-tracing procedures for evaluating prism and grating 
spectrometers. 

It is the purpose of the present paper to describe a 
unified ray-tracing procedure applicable to systems of 
quite general type. The procedure has been developed 
in accordance with the following requirements : 

(1) Cylindrical, toric, and conic surfaces mubt be 
accommodated with provision for specifying departures 
from these forms. 

(2) Provision must be made for the arbitrary orienta- 
tion and positioning of all surfaces with relative ease of 
specification. 

(3) Diffraction gratings generated by linear or con- 
centric circular ruling motions on any of the allowed 
surface types must be accommodated with provision for 
specifying a variable ruling separation. 

(4) The procedure should be capable of extension to 
cover new surface types or new modes of ruling without 
major modification. 

In  addition, the computing formulas have been 
tailored for digital-computer use. For this reason, as 
well as for conceptual simplicity, an algebraic, rather 
than a trigonometric, approach has been adopted 

DIVISION OF THE PROBLEM 

-1 given ray is specified by the coordinates (Xo,fo,Zo) 
of a point Po through which the ray passes and by its 
direction - - -  cosines (E,,$) in a reference coordinate system 
( x , Y , Z )  having its origin at a point 0 (see Fig. 1). A 
surface S is specified by an equation 

F ( X ,  U , Z )  = 0, (1) 

c L 
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FIG. 1. Reference coordinate system (x,u,g) and local system 
( X ,  U,Z), showing incident ray and computed distances, SO and SI. 

referred to a coordinate system (X ,Y ,Z )  having its 
origin a t  a point 0. The - - -  orientation of the ( X , Y , Z )  
system relative to the ( X , Y , Z )  system and the coordin- 
ates of 0 with respect to 6 are given. The ray-tracing 
problem may now be separated as follows : 

(I) Transform the ray-point coordinates ( ~ o , P o , ~ o )  
and direction cosines (k,Z,a) into their values in the 
(X,E',Z) system. 

(11) Find the point of intersection of the ray with 
the surface S. 

(111) Find the change in direction of the ray refrac- 
tion, reflection (or diffraction in the case of a grating) 
a t  the surface S. 

(IV) Transform the new ray-point - - -  coordinates and 
direction cosines back to the (X ,Y ,Z)  system (optional). 

(V) Repeat I through I\' for succeeding surfaces in 
sequence. 
Step IV is obviously omitted if the coordinate system 
associated with the next surface is referred to the system 
associated with S instead of ,to the reference system. 

We now proceed to treat each of the foregoing steps 
in detail. 

I. Transformation to the Local 
Coordinate System of S 

The orientation of the local system (X ,Y ,Z)  may be 
specified with respect to the reference system in a 
variety of ways, We have chosen a specification in 
terms of Euler angles. Figure 2 - - -  shows the generation of 
the ( X , r , Z )  system from the (X ,Y ,Z)  system by three 
successive rotations a, 8, and y. The complete rotation 
matrix is the product of matrices representing the 
individual rotations and is 

(cosy - shy  0 )  (1 0 0 

0 1, 0 sinp cosp sina 0 cosa 
R= s h y  cosy 0 0 cosp -9 i 1 l o  11 

(cow cosy+ sina sinp siny) 
(cow siny - sina sinp cosy) 

- cos0 siny (- sina cosy+ cow sinp siny) 
cos0 cosy (- sina siny - cow sin0 cosy) 

sina! cosp sinp cosa cosp 

All angles shown in Fig. 2 are positive. 

U'. Allen and J. Snyder, J. Opt. SOC. Am. 42, 243 (1952). 
3.4. Murray, J. Opt. Soc. Am. 44, 672 (1954). 
' M. Herzberger, Modern Geomelrical Optics (Interscience Publishers, Inc., New York, 1958), Chap. V. 

G. Kosendahl, J. Opt. Soc. Am. 51, 1 (1961). 
H. Yoshinaga, B. Okazaki, and S .  Tatsuoka, J. Opt. SOC. Am. 50, 437 (1960). 



L .I - 
A - 

June 1962 G E N E R X L  K L 4 Y - T R r \ C I  S G  P R O C E D I ‘ R E  6 74 

FIG. 2. Generation of ( X , Y , Z )  system from (x,P$) system 
after translation of origin to 0. (%,P$) -+ (p,Y’$‘) by rota- 
tion a; (X‘,I“,Z’) -+ (X”,Y”,Z”) by rotation 6 ;  (X“,P’ ,Z”)  + 
(X,Y,.Z) by rotation y. 

The coordinates of the ray point Po in the ( X , Y , Z )  
system will be denoted by (XhI’o,Zo), and the ray 
direction cosines in this system will be (k,Z,m). If the 
coordinates of 0 are (Zo,ao,Zo), as measured in the 
reference system, then the transformation equations for 
the ray data are 

Xo-50 E;] = R  [;(oo;Qj 7 (3 )  

and - 

(1) 
m 

11. Determination of the Ray Intersection 
with S 

The parametric equations of the given ray may be 

X = X o + k s ,  Y= IT0+Zs, Z=Zo+ms, ( 5 )  
written 

where s is the parameter of distance along the ray 
measured from (Xo, Yo,Z0).  

I t  \rill be convenient to determine first the inter- 
seclion of the ray with the Z = 0  plane. Denoting the 
required value of s by so, and the resulting values of .Y 
and Y by XI and Fl, me have from Eqs. (5) 

With the understanding that s now be measured from 
(X1,Y1,O), we may replace Eqs. (5) by 

X=X1+ks, Y= Yl+ZS, z = m s .  (8) 

Our problem now is to find a value of s such that the 
resulting values (X ,Y ,Z)  from Eqs. (8)  satisfy the 
surface Eq. (1). R e  might substitute Eqs. (8) directly 
in Eq. (1) and attempt to solve the resulting equation 
for s. This can be accomplished directly, however, only 
in special cases. Instead, we shall apply the Y I ewton- 
Raphson iteration technique. Using the subscript j to 
denote the iteration number, we write, 

s ~ + I =  sj-F (X j ,  Y j ,Zj ) /F’(Xj ,  Yj,Zi) (9) 

where from Eqs. (S), 

and where 

F’( X,, lTj,Z9) = dF, ds 
= ( F . M +  (F,),I+ (F:),m. (11) 

We have used the notation ( F J J  to represent d F / a X  
evaluated at (X2, I ’JJ) ,  and similarly for the deriva- 
tives with respect to Y and Z.  The process may be 
started from a first approximation 

SI= 0, (12) 

and is terminated with the value s/ for which 

,Sf--S.f-l < E ,  (13) 

where is a small preassigned tolerance whose value 
depends on the degree of accuracy required. 

The choice of a starting point a t  the Z=O plane will 
ordinarily ensure convergence of the process represented 
by Eq. (9) for the forms of the surface equation which 
we shall define. There are, however, circumstances 
under which the process will break down or converge t o  
an incorrect value. If F’ -+ 0 at any point in the process, 
Eq. (9) will either become indeterminate or will result 
in s --f CQ . In particular, Eq. (9) will become indeter- 
minate if the ray meets the surface at grazing incidence. 
It is also possible for F‘ -+ 0 under other circumstances 
if the surface is nonspherical, but the likelihood of such 
a situation occurring in practice is fortunately slight. 
iVhen the ray, in fact, fails to intersect the surface at 
all, the process will naturally diverge and will usually 
result in an oscillating sequence of values for s with the 
possibility of s -+ at some point. 

It is further possible for a ray to intersect a surface 
at several points, and the first approximation (12) may, 
in such circumstances, result in convergence to  an 
incorrect point. Again, however, the situation is not 
likely to be encountered in practice. 

The total path along the ray from (Xo,YO,Zo) to the 
surface is 

p= so+s f. (14) 

While this quantity is not directly needed for the trace, 
it provides a quick check on the nature of the ray path. 
For a true ray path, p must always be positive. A 
negative value for p indicates a virtual path, i.e., an 
extension along the line of the ray in the direction 
opposite to the direction of propagation. 

Having completed the iteration, me have the inter- 
section coordinates (Xf ,Y f ,Z f ) .  In addition, we have 
available a set of direction numbers for the surface 
normal at the intersection point. These will be needed 
in step 111, and are given by 

K =  ( F z ) / ,  L= (FYI/, M =  ( F A / .  (15) 

We now turn our attention to the form of the surface 
equation and its derivatives for various surface types, 
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TABLE I. Surface obtained for various values of K .  
__ -- ~ 

~ ~ 

- ~ 

~ 

Range or value of Type or surface _ _  __ __ -~ ~ ~ _ _ _ _ ~ _  
K < O  hyperboloid 
K = O  paraboloid 

o < K < 1  hemelipsoid of revolution 

K = l  hemisphere 
K > 1  hemelipsoid of revolution 

about major axis 

about minor axis 
-- ~. ~- _. -_ ~ - _ _ _ _ _ ~  ~ _ _  - 

Rotationally Symmetric Surfaces 

All of the rotationally symmetric surfaces encountered 
in optical design may be represented by 

Y 

F (x, Y, z )  = z - Cp2/[ 1 + (1 - KC2p2) :]-E cU,p2 '= 0, (16) 
z=I 

where p2=X2+Y2. In  most cases, S need not exceed 5. 
If the terms of the summation are omitted, Eq. (16) 

represents revolved conic sections. The vertex curvature 
of these surfaces is c, and the type of surface is deter- 
mined by the value of K .  Table I indicates the type of 
surface obtained for various values of K : 

Figure 3 clarifies the relationship between c, K ,  and 
the type of surface represented. Note that when K > O  
the surface Eq. (16) is limited to a range 

$ < 1 / ( K C 2 ) .  (17) 

The derivative5 associated with Eq. (16) are needed, 
and these are 

F,= -AXE, F , =  - I'R, 1, (18) 

/.:= C ' ( 1 - Kf2pL) '+ 2 ~o/ jp2 (1 -1 ) .  (19) 

where 
N 

1=1 

Cones of revolution, or axicons, may be represented 
by 

F= Z-p/tanO=O, (20) 

where 0 is the half-angle of the cone. The associated 
derivatives are, then, 

F,= - X / p  t a d ,  F,= - Y / p  tan& F2= 1. (21) 

It should be mentioned that Eq. (20) may be closely 
approximated by the hyperboloid form of Eq. (16) by 

FIG. 3. Relationship of K and c to geometrical parameters of the 
conics represented by Eq. (25). The dashed lines in the figure for 
K<O represent asymptotes. 
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FIG. 4. Generation 
of toric surface. 

giving c a large value and setting 

K = - tan2& (22) 

The error in this representation satisfies the following 
conditions : 

error in F < 1 KC 1 -I, 

error in d F / d p  < 1 2 K C 2 p 2  I -I. 

( 2 3 )  

( 2 4  
Finally, it  is worthwhile noting that when the terms 

of the summation in Eq. (16) are omitted, we may 
avoid taking a square root by writing the surface 
equation in the simpler form 

F = z - $6 (p2+ Kz2) = 0. (25) 
This is essentially the form used by Herzberger5 in his 
treatment of conics of revolution. For this case, we have 

PZ= - c X ,  F,= -CY,  FZ=1-~cZ. (26) 

Torics and Cylinders 

In the last section, we considered surface:, of revolu- 
tion about t h e  Z axis. Here, we consider surfaces 
generated by revolving a curve contained in the Y Z  
plane about an axis parallel to the 1- axis, which inter- 
sects the Z axis a t  a distance R from the origin (see 
Fig. 4). We shall let the equation of the curve in the 
YZ plane be 

Z= f ( Y ) .  (27) 

The profile of the surface in a plane parallel to the X Z  
plane cutting the surface at a height Y will be a circle 
of radius R - f ( Y )  with center at Z=R,  having the 
equation 

or 

Defining the curvature of revolution by 

we may thus write 

Jc*+ (2 - R)? = [R-f(  Y ) y ,  (28) 

Z = f ( E.') + ( 1/2R) [X2+Z2 - f 2  (E.')]. (29) 

C R =  1/R, (30) 

F ( X ,  Y ,Z) = Z - j (  Y )  - +CR[ X2+Z? - f?  ( I') ] = 0, ( 3  1) 

with derivatives 

F,= - C R ~ ,  

F,= [ ~ ~ f ( y )  - 11 ( d f / d Y ) ,  ( 3 2 )  
F,= l-~nz. 
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\Ye may take R form for !(’I-‘) suggeited by Eq. 116) : 
\ 

f( I r, = G 1‘’ ’[ 1 + ( 1 - KC’ IT‘) 4]+c ( Y j  I-?’. (33) 
j=1 

The derivative needed in the second of the E ~ s .  (32) 
is thus 

N 

I J=l 
I d j j d  k’ = c 1.; ( 1  - KCZ I ‘)t + 2 c ja, P(J-’). (34) 

An asphenzed cylinder with axis parallel to the X 

cylinder with axis parallel to the I’ axis is obtained by 

I 
I axis is obtained by setting c ~ = 0 ,  while a circular 

4et ting f( Y )  = 0. 
I 

III. Change in Direction of the Ray after 
Refraction, Reflection, or Diffraction 

Rejraciioiz 

Sneli’s law of refraction is most conveniently ex- 
pressed in the vector form 

-Y‘S’ x r = K S  x r. 

Here S is a unit vector in the incident-ray direction with 
components (k,Z,m), and S’ is a unit vector in the 
refracted-ray direction with components (k‘,Z’,m‘) ; r is 
a vector normal to the refracting surface at the ray 
intersection point and has components (K,L,M) ; S is 
the refractive index of the medium in which the ray is 
incident and X’ is the index of the medium into which 
the ray is refracted. 

(35) 

It follows from Eq. (35)  tha t  

S’=pS+rr, 136) 

where p= S; -\-I and r is an undetermined multiplier. 
The component equations of (36) are 

k’=pk+I’K, l ’=pl+rL,  m‘=pm+TM. ( 3 5 )  

Squaring and adding Eqs. (37) we obtain a quadratic 
in r, 

in which 

and 

r?+2~r+b= 0, (38) 

a= p(kK+lL+ mM),l (KZ+P+W),  (39) 

b= (p2- l ) / (K*+L?+M?).  (40) 

A s  suggested by Herzberger,; Eq. (38) may be solved 
by the Sewton-Raphson iteration technique. \Ye write 

and use 

S O W ,  

v (I’) = P+ 2 ~ r + b ,  (41) 

rn+*= r,- v(rn); v(rn). (42) 

vyr,)= 2(r,+~), 

so Eq. (42) becomes 

rn+l = (r;J- b)/2(rn+a). (43) 
7 SI. Herzberger, J. Opt. Soc. Am. 41, 805 (1951). 

It is necessary to choose a first approX3mation rl which 
will ensure convergence to the physically correct root of 
Eq. (38). A suitable value is 

rl= -b/2u.  (W 
This approximation is seen to break down as a+O.  
However, this corresponds to the case of grazing inci- 
dence and, hence, would have resulted in a breakdown 
in 11. The condition under which Eq. (38) fails to have 
a real root is b>a2, corresponding to total internal 
reflection. 

Refedon 

-It a reflecting surface we may use the foregoing 
equations with p= 1 and the other root of Eq. (38). I n  
this case, b=O, and we may immediately write 

r=-22a. (45) 
Equations (37) thus become 

k’=k-2uK, 1’=1-2aL, mr=m-2aM.  (46) 

Dijrmtwit 

I n  view of the fact that we have to trace rays in all 
possible orientations, the usual diffraction equation for 
the principal section of the grating is inadequate. The 
general Mraction equations for a plane grating were 
used in scalar form by, among others, Minkowskis in 
connection with the curvature of spectral lines of 
grating spectrographs, by Toraldo di Franciag in con- 
nection with the theory of the Ronchi test, and by 
GuildLo in connection with the formation of moirC fringes 
by two crosed-diffraction gratings. The scalar diffrac- 
tion equations may be conveniently put in a vectorial 
form as indicated below. 

Con-ider a plane grating having parallel linear rulings 
with separation d. Let us associate with the grating a 
right triple of unit vectors, p, q, and r. Let r be normal 
to the grating and q parallel to the rulings; p will then 
be normal to the rulings. Let a beam of light be incident 
on the grating in a direction defined by the unit vector 
S. It may be shown that the diffracted beam has a 
maximum of intensity in the direction of the unit vector 
S‘, satisfying the relation 

S’ x r=pS x r+ ( 1 1 X / ~ \ ~ ~ r d ) q ,  (47) 

where iz is the integral order number, X the vacuum 
wavelength, and and S’ are as previously defined. 
Sote  that, for the zero order, Eq. (47) becomes Snell’s 
Law. 

The following geometrical interpretation of the gener- 
alized diffraction relation may be of interest. This is the 

* K. Minkowski, Astrophys. J. 96, 305 (1942). 
T. di Francia, Contributed article on the Ronchi Test, ‘‘Optical 

lo J. Guild, The Interference Syslems of Crossed Diffraction 
image evaluation,” NBS Circ. 526, 165 (1954). 

Gratings (Oxford University Press, Xew York, 1956), p. 23. 
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fact that all orders of diffraction lie on a cone with ruling 
direction as the axis and the semi-apex angle equal to 
the angle made by the zero-order ray with the direction 
of the rulings. 

Now the geometrical-optics approximation allows the 
laws governing the propagation of a plane wave across 
an infinite plane boundary to be applied to the propaga- 
tion of a vanishingly thin pencil of light-the ray- 
across a local region of a nonplanar boundary. Thus we 
shall use Eq. (47) as the law determining the direction 
of the diffracted ray a t  a point on a grating surface 
whose shape corresponds to any of the previously given 
forms of Eq. (1). It will be necessary to determine the 
local value of d and the local direction of the rulings. 

First, let us derive a set of component equations for 
s’ analogous to Eqs. (37). For convenience, we define 

A= nX/N’d. (48) 

Then, substituting q= - p x r in Eq. (47), we obtain 

from which 
(S’-pS+Ap) x r=0,  

s’= pS-Ap+rr. (49) 

Now, r need not have unit magnitude in Eq. (49). The 
value obtained for the multiplier r will effectively com- 
pensate for a nonunit magnitude of r. Thus, we may 
take r to have the components (K ,L ,M)  as determined 
in 11. Denoting the components of p by (u,v,w) we may 
write the component equations of (49) : 

k’=pk-Au+I’K ,  
I‘ = pl- Av+ J?L, (50) 
m’ = pm - Aw+ r M .  

Squaring and adding Eqs. (50) and making use of the 
fact that p .  r=O, we obtain a quadratic equation in J? : 

r2+2ar+b’ = 0, (51) 
which differs from Eq. (38) only in the value of the last 
term, given by 

b‘ = b2 - 1 +A2 - 2pA (Kp+ Iv+ mw)] /  (K2+ L2+M2). 
( 5 2 )  

The iteration formula (43) may thus be used to deter- 
mine r : 

For a transmission grating, the root of Eq. (51) having 
the smaller magnitude is required. In this case a suitable 
first approximation is 

rn+l = (J? n2 - b’) /2  (rn+ a). (53) 

r = - b’/2a. (54) 

For the case of a reflection grating, the larger root of 
Eq. (51) must be taken, and convergence to this root is 
assured by the fist approximation 

TI= b’/2a- 2a. (55 )  

The condition under which Eq. (51) fails to have a real 

y d Q  I it 
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FIG. 5 .  Mode of grating ruling generation. In  Case I, the rulings 
are defined by the surface intersections with parallel planes. In 
Case 11, the rulings are defined by the intersections with concen- 
tric cylinders. 

root is of the form given in the discussion of refraction : 
b’ > a2. 

It is now necessary to determine the local grating 
space d (from which A is computed), and the com- 
ponents of p .  These quantities depend on the way in 
which the grating rulings are generated, and we shall 
consider two cases of interest (see Fig. 5 ) .  

Case I .  Surface intersections with parallel planes. Here, 
the grating rulings are defined by the intersections with 
the surface of a family of parallel planes. The planes are 
taken to be parallel to the YZ plane and the separation 
of adjacent planes, d,, is assumed given by a relation of 
the form 

d, = g ( X ) .  (56) 

In  most cases, d, will be constant, but in special situa- 
tions it may be desirable to use a variable spacing. I n  
particular, the effects of a periodic ruling error might be 
studied by including sinusoidal terms in Eq. (56). 

Now, q has no component in the X direction, since it 
is directed along a grating line which lies in a plane 
parallel to the Y Z  plane. Hence, 

qz= - ( p  x r),=Lw--Mv=O. (57) 

p.r=Ku+Lv+Mw=O, (58) 

p’p=u2+V2+w2= 1. (59) 

Also, 

and 

From Eqs. (57)-(59), we obtain 

u = 1/[1+ K2/ (L2+M2)]4, 
V =  - KLu/ (L2+ M‘), (60) 

W =  -KMu/(L2+M2) .  
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The local grating space is not given directly by Eq. (56) 
since the generating planes intersect the surface 
obliquely. Instead, it is given by d= d,/i- p, where i is 
the unit normal to the generating planes. Thus, 

d = dJu = g ( X ) / u .  (61) 

Case TI. Surface intersections with concentric cylinders. 
In  this case, the grating rulings are defined by the 
intersections with the surface of a family of concentric 
circular cylinders centered on the Z axis. The radial 
separation of adjacent cylinders may be taken to be 

d ,  = d P ) ,  (62) 
where 

p= (X’+Y”+. 

Here, we make use of the fact that p is constant along 
a ruling. This leads to Xq.+Yq,=O, from which 

x (Lw - MU) + E‘ (Mu-  E&!) = 0. (63) 

Equations (58), (S), and (63) yield 

u = [M2X+L(LX-  K Y)]/’G, 
v =  [MZY - K ( L X -  K Y ) ] / G ,  (64  

W =  - M ( K X + L Y ) / G ,  
where 

G= { (Kl++L‘+M’)[M?p?+ ( L X - K Y ) ’ ] )  i. (65) 

The local grating space is determined in the same 
fashion as before : 

d = d , / p  p, 

where e is the unit normal Lo the generating cylinders 
at the point of interest. Thus, we obtain for the grating 
space 

d = pd,/ (Xu+ Yu) = pg (p ) /  ( X U +  Yu) .  (66) 

IV. Transformation Back to the Reference 
System 

The new ray-point coordinates ( X ,  Y ,Z)  and direction 
cosines (k’,l’,m’) may be transformed to the reference 
system using the inverse forms of Eqs. (3) and (4). 
Using barred symbols to represent coordinates and 
cosines in the reference system, we have 

rx X+ZO I;] =R-++j (67) 

[ill = R-’[ m‘ ”; . 
and 

(68) 

Now, R is a product of unitary matrices and is, there- 
fore, itself unitary. Since a unitary matrix has the 
property that its inverse equals its transpose, we may 
write 

(cow cosy+sina sinp siny) 
- cosp siny 

(- sina cosy+ cow sinP siny) ( 

R-’= sinp . (69) 1 (cosa siny-sina sinb cosy) 

- sina siny - cow sinp cosy) 

sina cosp 

cosa cos@ 
cosp cosy 

In some situations, particularly when large element 
separations are involved, it may be desirable from the 
standpoint of accuracy to retranslate only the X and E’ 
coordinates, setting & = O  in Eq. (67). This establishes 
a new reference system whose axes are mutually parallel 
to those of the old system, whose Z axis is collinear with 
that of the old system, and whose origin is at the point 
(O,O,&) as measured in the old system. 

In other situations, it may be more convenient to 

specify the orientation and position of each surface with 
respect to the local coordinate system of the preceding 
surface. In  these cases, Eqs. (67) and (68) are omitted 
from the procedure. 
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